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Abstract: The consumption of a high-fat, low-carbohydrate diet (ketogenic diet) has diverse effects
on health and is expected to have therapeutic value in neurological disorders, metabolic syndrome,
and cancer. Recent studies have shown that a ketogenic diet not only pronouncedly shifts the cellular
metabolism to pseudo-starvation, but also exerts a variety of physiological functions on various or-
gans through metabolites that act as energy substrates, signaling molecules, and epigenetic modifiers.
In this review, we highlight the latest findings on the molecular mechanisms of a ketogenic diet and
speculate on the significance of these functions in the context of the epigenome and microbiome.
Unraveling the molecular basis of the bioactive effects of a ketogenic diet should provide solid
evidence for its clinical application in a variety of diseases including cancer.

Keywords: ketogenic diet; β-hydroxybutyrate; epigenetics; circadian clock; microbiome; neurological
disorder

1. Introduction

A ketogenic diet (KD) is a very high-fat, low-carbohydrate diet that induces a pronounced
shift in metabolism, leading to the production of ketone bodies. Beta-hydroxybutyrate (β-
OHB; see Box 1), acetoacetate, and acetone are three primary ketone bodies that are produced
in the liver and metabolized in the extrahepatic tissues, among which acetoacetate can be
further metabolized into either acetone through non-enzymatic decarboxylation or β-OHB by
β-OHB dehydrogenase (BDH1) [1–3] (Figure 1). Ketone bodies can also be produced during
fasting and prolonged exercise, under which conditions fatty acids are recruited from adipose
tissue and transported to the liver where they are metabolized into acetyl-coenzyme A (acetyl-
CoA). Acetyl-CoA is produced in mitochondria through the β-oxidation of fatty acids and
subsequently oxidized in the tricarboxylic acid (TCA) cycle and via oxidative phosphorylation
to produce ATP [3]. In the liver, when an excess amount of acetyl-CoA is produced that
exceeds the availability of oxaloacetate and the activity of citrate synthase to enter the TCA
cycle, acetyl-CoA is used for the biosynthesis of ketone bodies. Ketone bodies are produced
via a rate limiting enzyme, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2; see Box 1),
in the hepatic mitochondrial matrix and transported into various tissues via circulation. To
cross the membrane, ketone bodies are exported from the liver and imported to extrahepatic
tissues via monocarboxylate transporters [4,5]. In contrast to acetyl-CoA, which is a highly
hydrophobicmolecule, ketone bodies are water-soluble and do not need specific carriers for
transportation. In particular, in contrast to the skeletal muscle and myocardium that can
directly use fatty acids as an energy source, the brain cannot use them, necessitating the uptake
of circulating ketone bodies into the brain under limited glucose availability. Once transported
to each organ, ketone bodies are again converted back to acetoacetate by BDH1 and then to
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acetyl-CoA by 3-oxoacid CoA-transferase 1 (OXCT1), which is finally used as a local energy
source [3]. Notably, β-OHB is not utilized by the liver because OXCT1 is absent there [6].
Thus, the primary role of ketone bodies is to act as substrates for energy production, and a
KD recapitulates a pseudo-starvation metabolic state. Specifically, this involves a transition
in energy dependence from one based on carbohydrates to one based on fat, by artificially
changing the ratio of fat to carbohydrates while maintaining a constant energy level. Liver
and intestinal epithelium are known to be the primary and secondary ketone-producing
sites, respectively, with high HMGCS2 expression. Intriguingly, the possibility of extrahepatic
production of ketone bodies, such as in the retina, kidney, and adipose tissue, has recently
been demonstrated [2,7–9], suggesting that ketone bodies have more extensive physiological
roles than previously recognized.
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Figure 1. Metabolism upon KD consumption or fasting state in the liver and extrahepatic tissues.
Upregulated pathways are depicted by black bold arrows and downregulated ones by gray arrows.
AcAc-CoA, Acetoacetyl-CoA; AcAc, Acetoacetate; PEP, Phosphoenolpyruvate; CS, Citrate synthase.

Box 1. Definition of abbreviations
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Even within a single organ, each cell has its own metabolic bias depending on the
cell type. Normally, under aerobic conditions, cells are dependent on mitochondrial
metabolism, which is more efficient in producing ATP than glycolysis; however, in tumor
cells, the dependence on energy production is biased toward glycolysis, even under aerobic
conditions [10,11]. This so-called Warburg effect has actually been applied clinically as
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fluorodeoxyglucose (FDG)-positron emission tomography (PET), which detects the accu-
mulation of the glucose analog FDG and is used for cancer imaging [12]. Recent reports
revealed that this shift towards glycolytic metabolism in cancer cells is an adaptive response
to prevent reactive oxygen species (ROS)-induced cytotoxicity produced during mitochon-
drial respiration [13,14]. This bias in energy metabolism by cell type is a potential target
for therapy with functional foods and compounds, not just limited to cancer. Similarly,
a KD, which artificially creates a metabolic environment with a low glucose supply, is
potentially a promising therapeutic strategy to target metabolic alteration among different
cell types. Interestingly, glioblastoma (GBM) cells adapt to low glucose availability by
partially shifting their metabolism toward ketone body and fatty acid oxidation. This
suggests that if a KD is helpful in the treatment of brain malignancies, the mechanism is not
via the inability of GBM cells to derive nutrition from ketones [15]. The clinical application
and mechanism of action of a KD on various diseases such as cancer and neurological and
metabolic disorders have been reviewed in detail elsewhere [14,16].

2. A Ketogenic Diet as an Epigenetic Modifier

Besides their role as an essential energy source, recent reports have highlighted a wide
range of non-canonical effects of KD-associated metabolites, such as β-OHB and acetyl-CoA,
which could also act as signaling molecules (Figure 2). One of the novelties in the field of
KDs is the global modification of gene expression by bioactive intermediary metabolites that
act as epigenetic modifiers. Histone acetylation is strongly related to KDs and is correlated
with gene expression, which is modulated by histone deacetylase (HDAC; see Box 1) and
histone acetyltransferase (HAT; see Box 1). In general, histone acetylation works to promote
transcriptional activation. The positively charged histone is neutralized by the addition of
an acetyl group to histone tails by HATs, resulting in the reduced interaction between the
histones and DNA that allows the binding of RNA polymerase to the promoter region [17].
In contrast, when acetyl groups are removed by HDACs, tighter binding between histones
and DNA leads to transcriptional repression. Immediately after the start of a KD, oxaloacetate
is redirected toward gluconeogenesis, but as ketone production increases, excessive hepatic
glucogenesis is downregulated [18], which allows oxaloacetate to react with acetyl-CoA to
form citrate. Citrate from mitochondria is then transferred to the cytoplasm and reconverted
into acetyl-CoA, after which it acts as an acetyl donor to HAT in the nucleus [19]. In addition
to its critical role in histone acetylation, acetyl-CoA is also used as a substrate for non-histone
protein acetylation [20–22]. Indeed, the accumulation of acetyl-CoA due to inadequate ketone
body synthesis in Hmgcs2-knockout mice was shown to impair the function of the hepatic TCA
cycle via the excessive acetylation of mitochondrial proteins [22]. This implies the significance
of proper ketogenesis in fine-tuning the levels of metabolites in organelles/tissues and in
maintaining their function.

Nutrients 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 

HMGCS2, a rate limiting enzyme for β-OHB synthesis. Subsequently, β-OHB reinforces 
the Notch signaling pathway in ISC through class I HDAC inhibition and regulates intes-
tinal homeostasis [25]. Furthermore, upon KD consumption, de novo diurnal oscillations 
in local β-OHB levels orchestrate the circadian rhythmicity of ketogenic and lipid metab-
olism-associated genes, specifically in the gut epithelia, partitioning the phase and ampli-
tude of gut and liver clocks [26] (see Section 4.2 for details). 

β-OHB also serves as a substrate for histone lysine β-hydroxybutyrylation (Kbhb) 
[27], a novel type of epigenetic modification that has recently been attracting attention. 
Kbhb is significantly induced during prolonged fasting and is associated with the upreg-
ulation of genes in starvation-responsive metabolic pathways [27], effectively coupling 
metabolism with gene expression. In CD8+ memory T cells, β-OHB is associated with the 
epigenetic modification Kbhb at Lys 9 of histone H3 (H3K9) of metabolic genes, leading 
to the upregulation of genes that regulate the formation and maintenance of CD8+ memory 
T cells [28]. Intriguingly, a recent study using high-throughput proteomic analysis re-
vealed that Kbhb is a widespread post-translational modification of non-histone proteins 
and is highly specific to the liver and kidneys. Many Kbhb sites overlap with lysine resi-
dues that are important for enzymatic function, implying that Kbhb potentially modulates 
enzymatic activity [29]. Notably, the tumor suppressor protein p53 is also modified by 
Kbhb, which results in decreased acetylation of this protein in parallel with a reduction in 
downstream gene expression [30]. Thus, Kbhb is a novel mechanism for regulating p53 
activity, which may link the KD to antitumor activity, suggesting a new mechanism in 
this field and providing a promising therapeutic target for cancer treatment. 

                           
Figure 2. Multiple layers of epigenetic regulation by ketogenic diet-induced metabolites. 

3. Ketone Bodies as Endogenous Ligands for G-Protein-Coupled Receptors 
Some key metabolites, such as short-chain fatty acids (SCFAs), bile acids, and inter-

mediary metabolites, bind to G-protein-coupled receptors (GPCRs) to exhibit intracellular 
signal transduction to regulate a variety of biological processes [31]. In line with the grow-
ing evidence that ketone bodies are signaling molecules, it has been shown that several 
GPCR receptors, such as GPR41, GPR43, and GPR109A, well-known receptors for micro-
bially derived SCFAs, also bind to ketone bodies, thereby playing essential roles in various 
aspects of ketone body-mediated physiology [32–37]. These GPCR-mediated ketone body 
effects are currently best described in the field of metabolism, but many other physiolog-
ical actions of ketone bodies may also be exerted via GPCR signaling as well. Under keto-
genic conditions, an increased level of β-OHB inhibits the lipolysis of adipose tissue via 
binding to GPR109A [32], maintaining the metabolic status via a negative feedback mech-
anism. In the ischemic brain, infiltrating macrophages express GPR109A, which mediates 

Figure 2. Multiple layers of epigenetic regulation by ketogenic diet-induced metabolites.



Nutrients 2022, 14, 782 4 of 18

The bacterial metabolite butyrate is well known as a compound that acts as an HDAC
inhibitor [23]. By working in concert with HAT, gene expression is regulated by the
equilibrium of histone acetylation and deacetylation. Shimazu et al. focused on the
similarity of chemical structure between butyrate and β-OHB and found that β-OHB is an
endogenous and specific inhibitor of class I HDAC [24] that deacetylates lysine residues on
histone and non-histone proteins. They also showed that β-OHB protects against oxidative
stress via the acetylation and upregulation of oxidative stress resistance genes. Since
then, the inhibition of HDAC by β-OHB has been shown to be correlated with various
physiological processes such as maintaining the homeostasis of gut epithelial cells [25] and
the intestinal clock [26]. For instance, intestinal stem cells (ISC) are known to be rich in
HMGCS2, a rate limiting enzyme for β-OHB synthesis. Subsequently, β-OHB reinforces the
Notch signaling pathway in ISC through class I HDAC inhibition and regulates intestinal
homeostasis [25]. Furthermore, upon KD consumption, de novo diurnal oscillations in
local β-OHB levels orchestrate the circadian rhythmicity of ketogenic and lipid metabolism-
associated genes, specifically in the gut epithelia, partitioning the phase and amplitude of
gut and liver clocks [26] (see Section 4.2 for details).

β-OHB also serves as a substrate for histone lysine β-hydroxybutyrylation (Kbhb) [27],
a novel type of epigenetic modification that has recently been attracting attention. Kbhb is
significantly induced during prolonged fasting and is associated with the upregulation of
genes in starvation-responsive metabolic pathways [27], effectively coupling metabolism
with gene expression. In CD8+ memory T cells, β-OHB is associated with the epigenetic
modification Kbhb at Lys 9 of histone H3 (H3K9) of metabolic genes, leading to the upregu-
lation of genes that regulate the formation and maintenance of CD8+ memory T cells [28].
Intriguingly, a recent study using high-throughput proteomic analysis revealed that Kbhb is
a widespread post-translational modification of non-histone proteins and is highly specific
to the liver and kidneys. Many Kbhb sites overlap with lysine residues that are important
for enzymatic function, implying that Kbhb potentially modulates enzymatic activity [29].
Notably, the tumor suppressor protein p53 is also modified by Kbhb, which results in
decreased acetylation of this protein in parallel with a reduction in downstream gene
expression [30]. Thus, Kbhb is a novel mechanism for regulating p53 activity, which may
link the KD to antitumor activity, suggesting a new mechanism in this field and providing
a promising therapeutic target for cancer treatment.

3. Ketone Bodies as Endogenous Ligands for G-Protein-Coupled Receptors

Some key metabolites, such as short-chain fatty acids (SCFAs), bile acids, and inter-
mediary metabolites, bind to G-protein-coupled receptors (GPCRs) to exhibit intracellular
signal transduction to regulate a variety of biological processes [31]. In line with the grow-
ing evidence that ketone bodies are signaling molecules, it has been shown that several
GPCR receptors, such as GPR41, GPR43, and GPR109A, well-known receptors for micro-
bially derived SCFAs, also bind to ketone bodies, thereby playing essential roles in various
aspects of ketone body-mediated physiology [32–37]. These GPCR-mediated ketone body
effects are currently best described in the field of metabolism, but many other physiological
actions of ketone bodies may also be exerted via GPCR signaling as well. Under ketogenic
conditions, an increased level of β-OHB inhibits the lipolysis of adipose tissue via binding
to GPR109A [32], maintaining the metabolic status via a negative feedback mechanism. In
the ischemic brain, infiltrating macrophages express GPR109A, which mediates the neuro-
protective effect of KD [34]. Furthermore, β-OHB suppresses sympathetic nervous system
(SNS) activity by antagonizing GPR41 and thereby decreasing the heart rate, in contrast to
propionate, one of the SCFAs, which activates the same receptor [33]. Thus, two mutually
opposing endogenous ligands control energy metabolism by reflecting the temporal or
local metabolic environment. In addition to the pleiotropic effects of β-OHB mediated
by GPCRs, acetoacetate, another form of ketone body, also exerts physiological effects to
maintain energy homeostasis via GPCR signaling. For instance, acetoacetate enhances
plasma lipoprotein lipase (LPL) activity via GPR43. In contrast, the drastic reduction in gut



Nutrients 2022, 14, 782 5 of 18

bacterial abundance and the subsequent decrease in intestinal SCFAs, products of bacterial
fermentation, in the fasting state, suppress SCFA–GPR43 signaling, thus attenuating intesti-
nal LPL activity. Taking these findings together, tissue-specific GPR43 sensed by distinct
ligands results in increased systemic lipolysis under ketogenic conditions [35], enabling
efficient energy expenditure to meet the local energetic demand.

4. Physiological Impact of a Ketogenic Diet

Numerous studies have shown that a KD modulates diverse physiological features,
such as the nervous system, circadian clock, metabolism, and immune system function. In
this section, we speculate on how the KD and ketone bodies affect each of these systems,
with a particular focus on the nervous system, which has been the subject of intensive
literature review.

4.1. Nervous System

Nutrition deeply affects the metabolic status of individuals, conferring significant
variations in the physiology of different tissues. The brain is no exception to this. Indeed,
neural tissue is highly energy-dependent: despite representing only 2% of the total body
mass, the brain consumes 20% of the body’s oxygen and 25% of its glucose [38]. This
high energy demand is mostly accounted for by action potentials, synaptic transmission,
resting potential, and processes for maintaining the health of cells [39]. As such, it is
unsurprising that changes in diet composition could deeply impinge on neurological
outcomes, as clearly demonstrated by the effects of a KD on refractory epilepsy. Controlling
the severity of seizures by manipulating nutritional intake dates back to ancient Greece,
when Hippocrates suggested fasting to his patients. To mimic the fasting metabolic state,
KD was first introduced clinically at the beginning of the 20th century. However, despite
its efficacy for epilepsy having been demonstrated in both animal models and humans, the
mechanisms behind this remain unclear.

Several theories have been proposed to explain how a KD could change brain ex-
citability and decrease the frequency of seizures. Ketone bodies, which are produced in
the liver as alternative fuel in response to fasting or a KD, increase their concentration
in the blood and cerebrospinal fluid after KD consumption. Seizure control gradually
improves within the first few weeks of initiating a KD, as serum ketone levels steadily in-
crease. Intriguingly, seizure control can quickly be lost when patients ingest carbohydrates,
thus inhibiting ketosis. Although some studies have found a direct correlation between
β-OHB plasma concentration and seizure control [40,41], there is no agreement on this
matter [42]. Preclinical research demonstrated the anticonvulsant properties of acetone
against pentylenetetrazol- and 4-aminopyridine-induced seizures [43]. Moreover, β-OHB
exerted anti-seizure effects in Kcna1-null mutant mice, which recapitulates essential features
of human temporal lobe epilepsy [44]. In addition, acetoacetate was found to be beneficial
against thujone-induced seizures in rabbits [45] and in sensory-evoked seizures in Frings
audiogenic seizure-susceptible mice [46]. Despite the in vivo efficacy of ketone bodies, the
application of β-OHB and acetoacetate in rat hippocampal–entorhinal cortex slices and
cultured hippocampal neurons did not alter synaptic transmission, suggesting that the
anticonvulsant properties of a KD do not result from a direct effect of ketone bodies on the
primary voltage and ligand-gated ion channels [47]. In contrast, the application of β-OHB
and acetoacetate reduced the spontaneous firing rate of neurons in slices from rodents’
substantia nigra pars reticulata, a region thought to act as a “seizure gate”, controlling
seizure generalization [48].

Collectively, this evidence indicates that the anti-epileptic effects of KD are not exclu-
sively due to an increase in ketone body production. It is likely that deeper changes in the
metabolic status upon consumption of a KD contribute to seizure amelioration. Indeed,
ketogenic dietary intake is associated with a significant decrease in glycolysis as the amount
of carbohydrates ingested is very low. The TCA cycle is fed through anaplerosis by alterna-
tive metabolic pathways, such as fatty acid oxidation and ketone body catabolism. This
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results in an increase in ATP production and changes in the synthesis of β-aminobutyric
acid (GABA: the most powerful inhibitory neurotransmitter) and glutamate (the major
excitatory neurotransmitter). Neuronal cells convert ketone bodies to acetyl-CoA, which
results in increased flux through the citrate synthase reaction of the TCA cycle. As a result,
oxaloacetate is consumed and is less available to the aspartate aminotransferase reaction.
Less glutamate is converted to aspartate and more glutamate becomes available to the
glutamine synthetase and glutamate decarboxylase reactions, with a consequential increase
in GABA synthesis [49]. A variety of studies have reported that KD treatment elevated
GABA levels in both human and animal brains, but it remains unclear whether changes in
glutamate also occur [50–52]. GABAergic but not glutamatergic activity in the hippocam-
pus was found to be enhanced by a KD in preclinical models of both acute and chronic
seizures, and those changes were shown to be mediated by Nrg1/ErbB4 signaling [53].
Intriguingly, a long-term (i.e., 3 months) KD modified expression of the potassium chloride
cotransporter 2 (KCC2), but not that of Na-K-Cl cotransporter 1 (NKCC1), in the dentate
gyrus of rats [54], while 1 month of a KD was not effective at altering the expression of
both transporters [55]. KD-driven enhancement of KCC2 expression, also observed in
the cerebral cortex [56], could explain an increase in GABAergic strength and, thus, the
anti-seizure outcome. Alternatively, a KD could decrease neuronal excitability by reducing
presynaptic glutamate release, as corroborated by evidence demonstrating that acetoacetate
modulates vesicular glutamate release, mediating seizure control in the rat brain [57].

Furthermore, other mechanisms have been proposed to explain how a KD could influ-
ence refractory epilepsy, involving modulation of mitochondrial energy metabolism and
reactive oxygen species production [58], enhanced synthesis and release of the inhibitory
modulator adenosine [59], opening of K(ATP) channels, and promotion of GABAergic
inhibition through GABAβ receptors [48]. However, the mystery of the KD remains unre-
solved. Recently, the identification of a novel player has complicated the clinical scenario
associated with the KD. New research has discovered that signals coming from the gut
microbiota could mediate the anti-seizure effects of a KD. Several studies have reported
changes in the composition or diversity of gut bacteria in individuals affected by refractory
epilepsy [60–63], suggesting that the gut–brain axis could be involved in the pathogenesis
of seizures and/or in the mechanism of KD action on the central nervous system (see
Section 5 for details).

Although the KD was initially introduced as an alternative approach to drugs for
epileptic patients, it is clear that its impact on brain function goes beyond this condition,
including influencing several neuropsychiatric disorders. Emerging evidence suggests that
a KD could be beneficial for neurodegenerative disorders such as Alzheimer’s disease (AD),
Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis [64–66]. Although
the mechanisms of action are unknown, they might be linked to the impact of a KD on
oxidative stress and brain metabolic alterations often observed during neurodegeneration.
As several reviews have already dealt with this [64–66], we here focus only on recent reports
regarding AD, the leading cause of dementia in aging societies worldwide.

In a recent study, a ketogenic dietary intake for 4 months improved spatial and
working memory and decreased amyloid plaque deposition and microglia activation in
the AD mouse model 5XFAD [67]. Similarly, KD feeding for 1 month in APP/PS1 knock-in
mice ameliorated their reduced motor performance, but their beta amyloid levels were
unchanged in both brain and muscle [68]. In addition, KD feeding for 3 months in APP/PS1
and Tg4510 (a mouse model replicating the forebrain-directed tau pathology seen in AD
patients) murine models again ameliorated their deteriorated motor performance but not
cognitive deficits, markers of neuroinflammation, or amyloid and tau deposition [68]. In
contrast, direct β-OHB subcutaneous administration improved spatial reference memory
but not motor function in APP mice [69]. Additional contrasting results were obtained
in amyloid beta-infused rats, in which intermittent fasting ameliorated their disrupted
memory functions, while a KD did not exert effects on behavioral tests and even exacerbated
gut dysbiosis by increasing Proteobacteria [70]. The discrepant findings often observed in
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preclinical models might be due to the use of different transgenic animals, experiments
being performed on animals of different ages, or differences in the composition of the KD.
Nonetheless, further evidence for a possible role of ketosis in AD has been highlighted by
the specific transcriptional signature observed in astrocytes and neurons upon KD feeding.
Neurons from KD-fed mice displayed enhanced expression of genes involved in signaling
pathways known to be protective against AD, such as oxidative phosphorylation, APP
metabolism, and insulin pathways, along with decreased expression of multiple genes
related to inflammation-associated Ms4a activity. Conversely, a KD was shown to increase
inflammation-related activity in astrocytes, but the interpretation of this finding in the
context of AD is complicated, necessitating further investigations [71]. Interestingly, a KD
affects not only the transcriptional landscape but also the morphology of glial cells, as
observed in rat hippocampus. In particular, astrocytes from KD-fed animals had a less
complex morphology than those of animals fed normal chow, without displaying changes
in a marker of activation, suggesting no sign of overt brain inflammation [72]. The reason
for such changes in shape is still unknown, but they might be involved in modulating the
interaction between glial cells and neurons at synapses with subsequent changes in the
strength of neurotransmission or other communication pathways to fine-tune neuronal cell
metabolism/activity.

In humans, only a few studies have systematically analyzed the effect of a KD in AD
patients or subjects affected by mild cognitive impairment, leaving open questions about
its actual efficacy in neurodegeneration. In a randomized trial including patients with mild
cognitive impairment, 6 weeks of a KD improved verbal memory performance [73]. Longer
KD treatment (i.e., 6 months) ameliorated white matter energy supply by increasing ketone
body uptake but with no significant effect on glucose uptake. Ketone body uptake was
correlated with better processing speed, while it had no association with episodic memory,
language, or executive function [74]. Moreover, the effects of a medium-chain triglyceride-
based ketogenic formula on cognitive function were examined in AD patients. Although
no amelioration was observed 2 h after a single administration, chronic intake (8–12 weeks)
of the ketogenic formula had positive effects on verbal memory and processing speed
in patients with AD [75]. An oral ketogenic compound, called AC-1202, was evaluated
in subjects diagnosed with mild to moderate AD. AC-1202 successfully induced mild
ketosis in AD subjects and improved cognitive performance [76]. Recently, in a randomized
crossover trial including AD patients, 12 weeks of a KD improved quality of life and daily
function, without impacting cardiovascular disease risk factors [77]. Other studies found
some benefits of a KD in terms of cognitive/memory scores [78,79].

Owing to the complex metabolic state induced by the consumption of a KD, it is not
simple to dissect the mechanisms responsible for its amelioration of neurodegenerative
disorders. Finally, a KD appears to be beneficial in autism spectrum disorder [80], bipolar
disorder [81], migraine [82], and schizophrenia [83]. However, in the literature, there is
a lack of preclinical research focusing on the cellular/molecular mechanisms involved,
and of randomized controlled clinical studies systematically evaluating the efficacy of
KD treatments.

4.2. Circadian Clock

The circadian clock exists in almost all tissues and orchestrates physiological rhythms,
allowing organisms to adapt to daily fluctuations in the environment. The molecular
clock is represented by an auto-regulatory transcriptional–translational feedback loop, and
entrained by the light/dark cycle. This molecular machinery comprises the transcriptional
activators circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-
like 1 (BMAL1), and the repressor proteins period (PER) and cryptochrome (CRY), which
work in concert to ensure daily oscillation of gene expression. A secondary feedback loop
of the molecular clock comprises orphan nuclear receptors REV–ERBα and RORα, whose
gene expression is also regulated by CLOCK–BMAL1. The expression of Bmal1 is regulated
by the transcriptional repressor REV–ERBα and activator RORα [84] (Figure 3a). In many
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peripheral tissues such as liver, circadian oscillators can also be entrained by daily feeding
rhythms, which uncouples peripheral clocks from the central clock in the suprachiasmatic
nucleus (SCN) [85,86].
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Figure 3. (a). Core clock machinery. Heterodimer protein CLOCK–BMAL1 binds to Per and Cry
genomic loci, whose protein products repress their own transcription. A secondary feedback loop of
the molecular clock comprises REV–ERBα and RORα, whose gene expression is also regulated by
CLOCK–BMAL1. The expression of Bmal1 is regulated by the transcriptional repressor REV–ERBα
and activator RORα. (b). Distinct controls of circadian rhythms in the liver and gut by a KD. Upon
KD consumption, circadian rhythm in the liver is enhanced by BMAL1, whereas rhythmic gene
expression in the gut is partially controlled by β-OHB-mediated de novo oscillation.

Importantly, the composition of food and timing of meals impinge on circadian ac-
tivity [87,88]. Feeding on a high-fat diet that causes metabolic syndrome induces a phase
shift of the circadian clock [89] and alters the diurnal rhythm of the transcriptome through
dynamic changes in the metabolome [87] and host microbiome [90]. Similarly, ketone
bodies and nutritional challenge by a KD also influence circadian biology, but interestingly,
they produce different changes in the clock than high-fat diets. PERIOD2 (PER2) in the
liver regulates the production of β-OHB, which serves as a signal to anticipate feeding
time [91].

Additionally, KD feeding influences diurnal rhythms in the peripheral tissues and
is differentially interpreted by tissue-specific clocks [26,92–94]. The recruitment of the
core clock transcription factor BMAL1 to metabolic genes is enhanced in the liver upon
KD consumption, directing the organism toward systemic adaptation to the ketogenic
conditions [26]. In contrast, KD feeding induces circadian transcriptional reprogramming
of intestinal energy metabolism, which is controlled by core clock-independent mecha-
nisms [26]. Notably, the level of β-OHB in each organ displays distinct cyclic profiles in
KD-fed animals, which is translated into time-of-the-day-dependent modulation of HDAC
activity specifically in the gut. This results in parallel circadian changes in the intestinal
expression of genes mediated by the key transcriptional regulator of lipid metabolism:
peroxisome proliferator-activated receptor alpha (PPARα; see Box 1). Although the phase
of core circadian clock genes such as Bmal1 and Clock was unaltered in this study, it is still
controversial whether a circadian phase shift is caused by KD ingestion [26,92–94]. The
circadian expression of clock genes was reported to be phase-advanced in the liver of mice
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fed a KD [93], in contrast to another study that observed a delayed phase of clock gene
expression in the liver and brain [94]. It is possible that differences in the composition of
the KD and the duration of feeding may lead to different effects on the peripheral clock. In
summary, a KD modulates clock function in a tissue-specific manner, suggesting that KD
consumption induces unique circadian molecular signatures in various organs (Figure 3b).

4.3. Metabolism

Many studies have shown that a KD leads to weight loss, while conflicting findings on
the impact of a KD on glycemic measures have been reported [95–98]. Some studies have
suggested that a KD induces hepatic insulin resistance, even though KD-fed animals show
lower plasma glucose [97,98]. A meta-analysis of randomized controlled trials in humans
revealed that a KD is effective at improving metabolic parameters associated with glycemic
status, weight, and lipids in obese patients compared with low-fat diets [99]. Many of
the effects of a KD on metabolic disorders are mediated by PPARα-dependent fibroblast
growth factor 21 (FGF21) [100,101]. Indeed, mice lacking FGF21 fed a KD gained weight
and showed marked impairments in ketogenesis and glycemic control. Furthermore, FGF21
activates SNS, which involves action on β-adrenergic receptors, and leads to increased
energy expenditure. In this way, the metabolic actions of FGF21 in response to a KD
involve diverse mechanisms. A report has also described that KD consumption altered
the composition of immune cells in adipose tissue, which correlates with the metabolic
phenotypes [102].

Ketone bodies themselves also influence metabolic health. Intriguingly, the transcrip-
tion factor PRDM16 induces β-OHB secretion from mature adipocytes, which acts on
adipose precursor cells to block fibrosis and facilitate beige adipocyte differentiation [9].
Sodium glucose cotransporter 2 (SGLT2) inhibitors, an effective therapeutic option for
diabetes, increase the urinary excretion of glucose, which subsequently improves hy-
perglycemia and promotes weight loss [103]. Although the elevation of ketone bodies
caused by SGLT2 inhibitors has raised concerns about ketoacidosis as a side effect, the
organ-protective effects of adequate levels of ketone bodies on the kidney [104,105] and
heart [106] have recently been suggested. SGLT2 inhibitor-induced β-OHB inhibits the
progression of renal injury by suppressing mTOR complex1 (mTORC1) signaling involved
in the pathogenesis of diabetic kidney disease and by restoring energy metabolism through
fatty acid oxidation [105]. In the heart, the cardioprotective effect of ketone bodies is
partially explained by the more efficient production of ATP with less oxygen consumption
than when fatty acids are used as an energy source [107]. Furthermore, the aforementioned
action of β-OHB as an antagonist of GPR41 suppresses SNS activity, thereby decreasing the
heart rate and oxygen consumption, leading to cardioprotection [33]. As already described
in the previous sections, many of the metabolic effects of β-OHB on energy metabolism are
mediated by GPCRs (see 3. Ketone bodies as endogenous ligands for G protein-coupled
receptors for details).

4.4. Immune System

Cellular metabolism interacts with the immune system. Various studies have shown
that a KD and ketone bodies also affect the immune system and have impacts on controlling
inflammation, infection, and cancer immunity. As mentioned earlier, β-OHB activates a sub-
set of macrophages via GPR109A, consequently inducing production of the neuroprotective
prostaglandin D2 (PGD2) [34]. This finding provides evidence of the neuroprotective action
of a KD via immune cells. Additionally, β-OHB inhibits activation of the NLR family pyrin
domain containing 3 (NLRP3) inflammasome, a critical component of innate immunity
in macrophages and neutrophils [108,109]. As the NLRP3 inflammasome is implicated in
the pathogenesis of influenza [110] and severe acute respiratory syndrome coronavirus
(SARS-CoV) infection [111], the potential clinical efficacy of a KD on viral infection is draw-
ing attention [112]. However, in contrast to in vitro mechanistic studies, the oral intake
of ketone bodies did not show apparent effects on the NLRP3 inflammasome [113,114],
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emphasizing the importance of validating the administration methods for the clinical
application of ketone bodies. In addition to the anti-inflammatory effect of β-OHB, the
expansion of protective gamma delta (γδ) T cells has also been associated with KD feeding
in lung and adipose tissue in rodent models [102,115]. Lung γδ T cells are expanded by
the consumption of a KD, which enhances the responses to influenza virus infection [115].
Notably, this effect is not dependent on an increased level of β-OHB, but instead requires
metabolic adaptation to the KD. Meanwhile, the effects of a KD on adipose tissue are quite
complex [102]. After short-term KD feeding, γδ T cells proliferate in the adipose tissue and
enhance transcriptional signatures associated with adipose remodeling [102]. In contrast,
after a long-term KD regimen, the number of γδ T cells decreases, which is associated
with impaired metabolic health. These results raise the important issue of how the body’s
adaptation to a KD influences treatment efficacy.

A KD is also correlated with cancer immunity. Programmed death-ligand 1 (PD-L1)
is an inhibitory checkpoint molecule expressed on antigen-presenting cells; its binding to
programmed cell death 1 (PD-1)-expressing T cells transmits an inhibitory signal in T cells
to exert antitumor immunity [116]. A KD induces a β-OHB-mediated antineoplastic effect
by preventing PD-L1 upregulation on myeloid cells and the expansion of CXCR3+ CD8+ T
cells. In contrast to the lung in the influenza virus infection model, no effects on the number
of γδ T cells were shown in these tumor-bearing mice [37]. These findings indicate that the
antitumor activity of a KD occurs through the host immune system, rather than through
direct cancer cell-autonomous mechanisms.

5. Influence of a Ketogenic Diet on Intestinal Microenvironment

In this last section, we highlight the link between nutritional cues from a KD and
gut microbes to further confirm the clinical importance of dietary intervention. The gut
harbors an enormous number of commensal microbes and pathogens that signal through
local or circulating microbial metabolites, thereby influencing a variety of host systems
such as metabolism and the nervous and immune systems [117]. Thus, the relationship
between the gut microbiota and host physiology has become one of the most popular
research topics in recent years. In the last decade, advances in high-throughput sequencing
technologies have allowed us not only to analyze intestinal microbes in detail down to the
species level, but also to determine their functions. This has led to tremendous growth in
our knowledge of the roles played by gut microbes in our health. Various factors such as
age, genetic background, and diet influence the composition of the gut microbiota [118,119],
the most important of which is diet. Indeed, dietary change in conventionalized mice
(germ-free mice transplanted with human gut microbes) drastically altered the composition
of their intestinal microbiome within a short period [120]. Likewise, the composition of gut
microbiota was shown to change drastically during KD consumption. Notably, Ang et al.
undertook a human microbiome study in subjects consuming a KD [121]. They reported
that the impact of the KD on the gut microbiome was distinctive from that of a high-fat diet,
and that Bifidobacterium, whose growth is remarkably inhibited by β-OHB, was consistently
decreased specifically in the KD-fed state. Moreover, the transfer of gut microbes derived
from KD-fed animals into germ-free mice resulted in a decrease in T helper 17 cells (Th17) in
the gut of recipient mice, which was reversed by the transfer of Bifidobacterium, suggesting
that KD controls host gut mucosal immune homeostasis through the gut microbiota. These
findings shed light on the role of the intestinal microbiota in host Th17 responses to KD
consumption. Relevant to these findings, it was reported that the reversal of an increase
in Th17 cells in children with intractable epilepsy following KD feeding [122] could be
partially mediated by changes in the gut microbiota.

As a KD has been recognized as a therapeutic intervention for various diseases, the associ-
ation between its effects and gut microbes has been widely examined [62,123–125]. KD feeding
was reported to alter the composition of the gut microbiota in rodents [121,123,124,126], and
Akkermansia muciniphila (A. muciniphila) and Parabacteroides mediated the protective effects of
a KD in mouse models of epilepsy. Notably, a reduction in bacterial gamma-glutamylation
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activity on amino acid substrates was revealed, promoting the elevation of hippocampal
GABA/glutamate ratios and protecting against seizures [124]. Moreover, KD consumption in
infants or children affected by refractory epilepsy was found to improve seizures and remod-
eled the intestinal microbiome [61,127]. However, further studies are necessary to understand
whether the KD-driven changes in the patients’ intestinal ecosystem are causally linked to a
KD’s therapeutic effects. A. muciniphila is also categorized as an immunogenic microbe that
induces myeloid cells to secrete inflammatory cytokines [128], although the microbial shift
to immunogenic bacteria induced by KD consumption in mice is not a central player in the
anticancer effects of a KD [37]. However, it is important to note that animals and humans
only share some of the gut microbiome, and the response of gut microbes to diet is not
the same between species. The systematic reviews do not provide a definitive consensus
of the compositional shift of the gut microbiota in humans or animals fed a KD, probably
because of the different sources of dietary fat and strains of animals; however, there are
some consistent findings in different reports. In mice, a few studies reported an increased
relative abundance of A. muciniphila, whereas some human studies identified a decrease
in Bifidobacterium and an increase in Bacteroides, which are associated with carbohydrate
metabolism and a diet rich in fat, respectively [62,129–131].

Conversely, the gut microbiota alters the rate of ketone body production in the liver,
which consequently affects host physiology [36]. The gut microbial transplantation of
alcoholic patients was also found to induce a reduction in hepatic ketone body synthesis
via the inhibition of lipolysis, which in turn prevented the neuroprotective effect of β-OHB
and drove neurological and behavioral alterations in the recipient mice [36].

6. Conclusions

In summary, the KD exhibits a variety of physiological effects through its capacity to
significantly tilt the balance of the body’s energy metabolism towards a pseudo-starvation
state, the biological effects of metabolites produced by KD consumption, and alteration in
the intestinal microbiota induced by dynamic changes in dietary ingredients (Figure 4). Of
particular importance is that metabolites, such as ketone bodies, that are produced by KD
intake modify gene expression via a variety of chromatin modifications; in this context,
it is crucial to elicit which molecules are targeted under what conditions. Furthermore,
host metabolomic alterations due to compositional change in gut microbial communities
have been shown to influence host physiology. Therefore, identification of bacterial species
and their metabolites with physiological effects may lead to the development of effective
therapeutic strategies. Overall, signals from the local environment are translated into
metabolite concentrations, which are reflected in local gene expression via epigenetic
modifications. This plasticity allows the organism to adapt to the local metabolic milieu
more efficiently and precisely.
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Although a KD has potential as a promising therapeutic intervention for various
disorders, it is challenging for many patients to maintain a KD for long periods of time.
More palatable therapeutic approaches, such as the direct administration of KD-derived
metabolites (e.g., ketone bodies), could be an alternative strategy for patients responsive
to KD regimens. Furthermore, appropriate adjustment of the dose and duration of those
metabolites would also be important for future clinical application.
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